基于机器学习的电阻点焊质量研究

来源 :湖南大学 | 被引量 : 0次 | 上传用户:baofeifly
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
全文阅读
车身质量与点焊接头质量息息相关,而焊核直径和拉剪强度是评价点焊接头质量的重要指标。由于焊接是一个多变量相互作用的复杂过程,为保证点焊接头质量,传统上为了获得合格的焊点尺寸需要反复调试焊接工艺参数,且为了研究焊点的力学性能还需要对每个焊接样件进行拉剪试验,该方法成本高、耗时长且效率低。另外,对于焊后质量检测,超声波焊点质量检测一直维持在人工手动检测的水平,焊点质量判断受人为因素影响较多,焊点质量检测准确率不高且检测效率低。因此,对于焊点质量的快速预测及焊后快速检测仍是一个亟待解决的课题。针对上述问题,本文提出基于机器学习的方法,构建焊点质量预测模型及焊点质量检测模型,为实现焊点质量的快速预测及检测提供一种新的思路。本文工作主要如下:1)本文首先构建了用于焊点质量预测的点焊工艺数据库。由于焊点数据有限,本文仅针对高强钢材料电阻点焊工艺,以焊接电流、焊接时间、焊接压力作为输入特征,焊核直径和拉剪强度作为输出,基于支持向量机、决策树、随机森林和XGBoost算法建立了焊点质量预测模型,并对各模型的预测精度及耗时进行对比分析。结果表明,基于XGBoost算法建立的焊点质量预测模型预测精度更高,预测结果更加接近实际值且用时非常短,表明本文所提出的焊点质量预测方法能够在保证结果可靠性的同时,大幅度提升焊点质量研究工作效率。2)为了获得更高的预测精度,针对上述焊点质量预测精度最优模型XGBoost,利用灰狼算法(GWO)对模型超参数进行优化,建立GWO-XGBoost复合模型,并和优化前模型预测结果进行对比分析。结果表明,GWO-XGBoost焊点质量预测模型的均方根误差降低,证明了GWO优化模型参数提高模型预测精度的有效性。3)利用超声波检测设备采集超声波回波信号,选取底面回波个数、中间回波个数、衰减率和底面回波间距四个特征作为评判焊点质量的特征,基于支持向量机、决策树、随机森林和XGBoost算法建立焊点质量分类模型,并对各模型分类准确率和用时及分类结果进行比较。结果表明,基于XGBoost算法建立的焊点质量分类模型综合准确率最高且测试用时非常短。然后使用灰狼优化算法对XGBoost焊点质量分类模型进行参数优化。结果表明,经过参数优化后的焊点质量分类模型的综合分类准确率有所提高,表明本文选用的灰狼优化算法对焊点质量分类模型进行参数优化能够一定程度的提高分类准确率。
其他文献
声能作为一种清洁可再生能源,可被用来为低功耗微型化设备提供能量,但是由于声音本身具有功率密度低、频率范围广等特点,将其转化为可利用的能源还存在一些难题。因此本文针对声能采集技术中声能密度低、采集频率窄等问题开展研究,通过设计多频可调的能量聚集放大结构和机电转换装置,将声能转化为电能。主要研究内容包括:建立了圆柱-方形腔有限元仿真模型,利用Helmholtz谐振腔声压放大理论验证了仿真模型的准确性,
石墨烯巨大的比表面积以及超高的电导率使其在柔性储能器件中的应用与研究中备受关注。然而,在组装成宏观薄膜的过程中,石墨烯之间的紧密堆积使薄膜材料的比表面积衰减严重,从而使电极无法发挥出预期的电化学性能。与赝电容材料复合不仅能增加薄膜材料的比表面积,还能为其提供丰富的储能位点,是提升石墨烯基薄膜电化学性能最常用且最有效的方法之一。然而,该策略往往会导致电极表现出较低的质量比电容,因此在实际应用中难以满
增材制造技术是一种可直接成形零部件的新型制造技术,被认为是决定未来经济的十二大颠覆技术之一,是推动智能制造发展的基石。激光增材制造因独特的“逐层制造”加工方式,使得材料的微观组织呈显著的异质性,宏观力学表现出各向异性。深入研究增材制造独特的微观组织与变形不均匀性的相互作用机理是理解增材制造材料变形行为、优化制造工艺、提高材料整体性能的关键。本研究采用微观数字图像相关方法,结合电子背散射衍射技术,对
有机太阳能电池具有低成本、高产量的卷对卷生产工艺制造轻质、柔性器件的优势。在过去的30年里,世界范围内广泛的研究工作致力于理解和提高有机太阳能电池的性能,其中包括:有机材料的设计,器件工艺的优化及器件效率的理论计算等。目前,随着非富勒烯有机受体的发展,有机太阳能电池的效率已获得巨大突破,聚合物太阳能电池的能量转换效率已超过18%,而全小分子有机太阳能电池也达到15%以上,显示有机太阳能电池有着广大
由于开关磁阻电机(SRM)在电机结构上存在物理构造简单、材料坚固可靠、所需制造成本较低等优良特性,而且其在工作性能上也拥有较大的起动转矩和调速效果优良等特点,使得SRM被认为是可以在未来的电机市场上占据一席之地并具备极强竞争力的调速电动机。但正是由于其简单的双凸极结构,使得SRM在转动过程中出现了转矩脉动剧烈的现象;而且当SRM运行至电流换相重叠区,由于导通相电流峰值过高,会出现绕组铜耗较大、效率
活性碳纤维(ACF)作为新一代的高性能吸附材料,由于吸附性能优异、吸附速率快、比表面积大、纤维直径小和易于加工等优点被广泛应用于催化吸附、电池电极、有害气体去除和环境净化等领域。近些年来,关于ACF的功能化修饰与调控(构建层次孔结构、负载金属纳米粒子、改性表面官能团)及其在电化学和挥发性有机气体(VOCs)吸附的应用逐渐成为研究的热点与焦点。本课题以廉价的乙烯焦油为原料,采用金属盐原位复合的方式调
在炼铁工艺流程中,贫矿需经过高温烧结、破碎及冷却等环节,才能用于高炉冶炼。其中,冷却过程作为重要环节之一,性能优良的冷却工艺对高温烧结矿冷却效果至关重要。目前主流的高温烧结矿冷却工艺分为两类,即环冷工艺和立冷工艺。环冷工艺采用交叉流冷却形式,存在漏风率高、热交换效率低等问题;传统立式冷却工艺采用逆流冷却形式,虽然提高了热交换效率,但因其料层过高,容易造成冷却装备风道堵塞,导致高温烧结矿冷却效果不佳
随着人们环保意识的提高,电动汽车因其污染小的优势成为越来越多人的选择。虽然最近几年我国的电动汽车销量不断增长,但是“里程焦虑”是影响消费者购买欲望的重要因素,因此解决这一出行难题对于电动汽车的推广和用户体验的提升具有重要意义。本文就电动汽车的可达性这一课题,从电动汽车的能耗入手,就驾驶风格和工况对能耗的影响、电动的可达性判断和城市可达性地图三个方面进行研究。首先,对采集的原始数据进行处理,筛选和构
19世纪80年代,在电子系统中发现了量子霍尔效应,标志着物质拓扑阶段的开始。最近,高阶拓扑绝缘体以新的体边对应关系出现在人们的视野中,并且具有新的拓扑不变量,例如体极化、贝里相位等。高阶拓扑绝缘体的出现拓宽了我们对凝聚态物理领域物质拓扑阶段的理解。与传统绝缘体(一阶)相比,高阶拓扑绝缘体在系统更低维度边界处受到拓扑保护。本文构建了一种以卷绕数进行拓扑表征的二维方形声学超材料结构。卷绕数是指空气流或
在土地资源紧缺且昂贵的城市核心区,配电基础设施扩容布点困难,供电成本不断攀升,地埋式变电站的出现有效缓解或彻底解决了上述问题。然而,无论是全埋式变电站还是半埋式变电站,变压器都被置于地下预制密闭空间中。由于地下土壤环境与传统地上变电站周围空气环境的热力学物理特性不同,易导致变电站功耗热量在对外传递过程中在周围土壤蓄积的现象,该现象将对变压器正常运行过程的温升产生影响。在地埋式变电站得到不断广泛应用